$$3^x + 3^x + 3^x =$$

(c)
$$9^{3x}$$

(b)
$$3^{x+1}$$

(d)
$$3^{3x}$$

$$3^{x} + 3^{x} + 3^{x} = 3(3^{x})$$

$$= 3 \times 3^{x} = 3^{1+x}$$

$$= 3^{x+1} \longrightarrow b$$
Remember
$$(a + a + a = 3a)$$

2. If
$$P(x) = x^3 - x^2 - x + 1$$
 and $Q(x) = x^2 - 2x + 1$, then $\frac{Q(x)}{P(x)} =$

(a)
$$\frac{1}{x+1}$$

(c)
$$\frac{1}{x-1}$$

(b)
$$\frac{1}{x^2+1}$$
 (d) $\frac{1}{x^2-1}$

(d)
$$\frac{1}{x^2-1}$$

2)
$$\rho(x) = (x^3 - x^2) + (-x+1)$$

 $= x^2 (x-1) - (x-1)$
 $= (x-1) (x^2-1)$
 $= (x-1) (x+1)(x-1)$

$$Q(x) = x^2 - 2x + 1 = (x - 1)(x - 1)$$

$$\sum_{x \in P(x)} \frac{Q(x)}{P(x)} = \frac{(x-1)(x-1)}{(x-1)(x+1)(x-1)} = \frac{1}{x+1}$$

- 3. The solution set for $3x^2 7x + \frac{49}{12} = 0$ contains:
 - (a) Two Solution

(c) No Solutions

(b) One Solution

(d) None of the above

(3)
$$b^2 - 4ac = (-7)^2 - 4(3)x \frac{49}{12}$$

= $49 - 12x \frac{49}{12}$
= $49 - 49 = 0$

so, two equal solutions _

4. The solution set for the inequality
$$2 - \frac{1}{x} < 1$$
 is:

(a) (1,∞)

(c) (1,2)

(b) (0,1)

(d) $(-\infty, 1)$

(4)
$$2 - \frac{1}{x} < 1$$

$$2 - \frac{1}{x} - 1 < 0$$

$$1 - \frac{1}{x} < 0$$

$$1 \times \frac{1}{x} - \frac{1}{x} < 0$$
(0,1)
$$1 \times \frac{1}{x} - \frac{1}{x} < 0$$
(b)

5. The solution set for
$$\frac{|x|}{x} + 2 = x$$
 contains:

(a) Infinite number of solutions

(c) One solution

(b) Two solutions

(d) None of the above

(5)
$$\frac{1}{2} + 2 = x$$

$$\frac{1}{2} \times \frac{2}{2} = \chi$$

$$\frac{1}{2} \times \frac{2}{2} = \chi$$

$$1 + 2 = \chi$$

$$x=3$$

$$(x=3)$$

$$\frac{1}{2} \times \frac{2}{x} = x$$

$$-\frac{x}{x} + 2 = x$$

$$-\frac{x}{x} + 2 = x$$

$$-\frac{x}{x} = 1$$

$$-\frac{x}{x} = 1$$

$$-\frac{x}{x} = 1$$

so, one solution (C)

6. The domain of
$$f(x) = \frac{\sqrt{x}-7}{\sqrt{x}+8}$$
 is:

(a) (-8,7)

(c) (49,64)

(b) R\{-8}

(d) [0,∞)

$$(6) \quad \chi > 0 \longrightarrow [0, \infty)$$

but, let's see what give us zero in the denominator to avoid it.

$$\sqrt{x} = -8$$
 (impossible)

Domain =
$$[[0, \infty)] \rightarrow (d)$$

$$7. \qquad \frac{x^2 + y^2}{x + y} =$$

(a)
$$x + y$$

(b)
$$x-y$$

(c)
$$\frac{x+y}{2}$$

- 8. Let A and B be two cylinders where half of A's base diameter is quarter of B's base diameter. While the height of A is double the height of B. Which of the following statements is true?
 - (a) Volume A is equal to volume B
- (c) Volume A is quarter of volume B
- (b) Volume A is half of volume B
- (d) Volume A is double volume B

8
$$\frac{1}{2}D_a = \frac{1}{4}D_b \rightarrow D_a = \frac{2}{12}D_b$$
 $D_a = \frac{1}{2}D_b$

No, the diameter of $A = \frac{1}{2}$ the diameter of B
which means: Radius of $A = \frac{1}{2}$ Radius of B

A $r = \kappa$
 $H = 2h \rightarrow V_A = \pi r^2 H = \pi \kappa^2 (2h) = (2\kappa^2 \pi h)$

B $r = 2\kappa \rightarrow V_B = \pi r^2 H = \pi (2\kappa)^2 h = (4\kappa^2 \pi h)$
 $Tt's obvious that $V_A = \frac{1}{2}V_B$$

- 9. 81 kg of flour consists of oats and wheat flour. The ratio of wheat to oat flour is 7 to 2. How much oats should be added for the oats to be one third of the wheat flour?
 - (a) 6 kg

(c) 3 kg

(b) 9 kg

(d) None of the above

wheat: Oat: Total (flows) wheat = $\frac{7 \times 81}{9} = 7 \times 9 = 63 \text{ Kg}$ $0at = 2x8t^{9} = 2x9 = 18k9$ \frac{1}{3} of the wheat = \frac{1}{3} \times 63 = 21 kg so, we need to add 3kg to the 18kg to make

- 10. In a sale, prices were reduced by 20%. If the price of an item is 80 KD before the sale, then its price during the sale is:
 - (a) 60 KD

(c) 58 KD

(b) 64 KD

(d) 66 KD

$$x = \frac{80 \times 80}{100} = 8 \times 8 = 64$$

- 11. A farmer has a certain amount of apples. If he sells 40% of the apples, 42 kg remain. What was the initial amount of apples?
 - (a) 70 kg

(c) 58 kg

(b) 60 kg

(d) 64 kg

(11) Before selling; selling; After selling
$$\frac{7}{5} = \frac{100}{100}; 40; 160$$

$$Kg 2 : 142$$

$$x = \frac{100 \times 42}{60} = \frac{10 \times 427}{8} = 70$$

12.
$$\sqrt{x^2 - y^2} =$$

- (a) |x-y|
- (b) |x| |y|

- (c) |x+y|
- (d) None of the above

(12)
$$\sqrt{\chi^2-y^2} \rightarrow Can't be simplified$$

$$\frac{1}{2^{n}} \sqrt{x \pm y} + \sqrt{x \pm \sqrt{y}} > 0$$

- 13. 20 loaves of bread were given to a group of 20 people consists of men, women and children. Each man, woman and child has been given three, two and half a loaf of bread respectively. How many children are in the group?
 - (a) 5
 - (b) 9

- (c) 13
- (d) 10

(13) The no. of children must be even, as the total (20) is a whole no.

the only even option is 10 -> d

- (a) 80
- (b) 100

- (c) 60
- (d) None of the above

$$x-10=9+10$$

$$x=9+20-0$$

$$x + 20 = 2(y - 20)$$

 $x + 20 = 2y - 40$
 $x = 2y - 60$

$$y + 20 = 2y - 60$$
 > $y = 80$
 $20 + 60 = 2y - y$ Inequ. (1) $x = 80 + 20$
 $x = 100$

$$\chi = 00$$

15. If
$$x-y=3$$
 and $x^2+y^2=29$, then $xy=$

(a) 10

(c) 28

(b) 18

(d) None of the above

(15)
$$x - y = 3$$

 $(x - y)^2 = (3)^2$
 $x^2 - 2xy + y^2 = 9$
 $x^2 + y^2 - 2xy = 9$
 $29 - 2xy = 9$
 $29 - 9 = 2xy$
 $20 = 2xy$

The minimum value of $P(x) = x^2 - 6x + 9$ is: 16.

(a) -6

(c) zero

(b) 9

(d) None of the above

To find the min. -> p'(xx) =0 2x - 6 = 0 $2x = 6 \longrightarrow x = 3$ $P(3) = (3)^{2} - 6(3) + 9 = 9 - 18 + 9$ the min. point is (3,0)

The min. value is 0 — C

The min. or Max. means the y-value not 2.

17.
$$\frac{a}{b} - \left(\frac{b}{a} - \frac{c}{a}\right) =$$

(a)
$$\frac{a^2-b^2-bc}{ab}$$

(b)
$$\frac{a^2+b^2-bc}{ab}$$

(c)
$$\frac{a^2-b^2+bc}{ab}$$

$$(\cancel{b}) = (-\frac{b-c}{a})$$

$$= \frac{a \times a}{b \times a} \frac{(b - c) \times b}{a \times b}$$

$$= \frac{a^2 - b(b - c)}{a \times b}$$

$$= \alpha^2 - b(b-c)$$

$$= \frac{ab}{a^2 - b^2 + bc}$$

$$\rightarrow$$
 (C)

$$\frac{1-3^{-2}}{3^{-1}+3^{-2}} =$$

(c)
$$\frac{15}{4}$$

(d)
$$\frac{-15}{4}$$

$$\frac{18}{\frac{1}{3} + \frac{1}{3^2}} = \left(1 - \frac{1}{9}\right) \div \left(\frac{1\times 3}{3\times 3} + \frac{1}{9}\right)$$

$$= \left(\frac{8}{9}\right) \div \left(\frac{3}{9} + \frac{1}{9}\right)$$

$$=\frac{8}{9}\div\frac{4}{9}=\frac{8}{9}\times\frac{8}{4}=\frac{8}{4}$$

$$=2 \rightarrow \alpha$$

19. If
$$f(x) = \frac{1}{2}(x+7)$$
, then $f(2x-7) =$

- (a) 14
- (b) x

- (c) zero
- (d) None of the above

$$\begin{array}{ll}
(19) & f(2x-7) = \frac{1}{2}(2x-7+7) \\
& = \frac{1}{2}(2x) = x \\
& = \frac{1}{2}(2x) = x
\end{array}$$

Let
$$f(x) = (x^C) \left(x^{\frac{1}{C}} \right)$$
 where C is a nonzero constant. If $f(2) = 4\sqrt{2}$, then $C =$

- (a) 3
- (b) 2

- (c) 4
- (d) 16

(20)
$$f(z) = 4 \times 12$$
 $f(z) = 2 \times 2^{\frac{1}{2}}$
= $2 \times 2^{\frac{1}{2}}$
 $= 2 \times 2^{\frac{1}{2}}$
 $= 2 \times 2^{\frac{1}{2}}$