

Cambridge IGCSE™

MATHEMATICS		0580/22
Paper 2 (Extended)	Octobe	er/November 2023
MARK SCHEME		
Maximum Mark: 70		
	Published	

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes should be read in conjunction with the question paper and the Principal Examiner Report for Teachers.

Cambridge International will not enter into discussions about these mark schemes.

Cambridge International is publishing the mark schemes for the October/November 2023 series for most Cambridge IGCSE, Cambridge International A and AS Level components, and some Cambridge O Level components.

Generic Marking Principles

These general marking principles must be applied by all examiners when marking candidate answers. They should be applied alongside the specific content of the mark scheme or generic level descriptors for a question. Each question paper and mark scheme will also comply with these marking principles.

GENERIC MARKING PRINCIPLE 1:

Marks must be awarded in line with:

- the specific content of the mark scheme or the generic level descriptors for the question
- the specific skills defined in the mark scheme or in the generic level descriptors for the question
- the standard of response required by a candidate as exemplified by the standardisation scripts.

GENERIC MARKING PRINCIPLE 2:

Marks awarded are always whole marks (not half marks, or other fractions).

GENERIC MARKING PRINCIPLE 3:

Marks must be awarded **positively**:

- marks are awarded for correct/valid answers, as defined in the mark scheme. However, credit is given for valid answers which go beyond the scope of the syllabus and mark scheme, referring to your Team Leader as appropriate
- marks are awarded when candidates clearly demonstrate what they know and can do
- marks are not deducted for errors
- marks are not deducted for omissions
- answers should only be judged on the quality of spelling, punctuation and grammar when these features are specifically assessed by the question as indicated by the mark scheme. The meaning, however, should be unambiguous.

GENERIC MARKING PRINCIPLE 4:

Rules must be applied consistently, e.g. in situations where candidates have not followed instructions or in the application of generic level descriptors.

GENERIC MARKING PRINCIPLE 5:

Marks should be awarded using the full range of marks defined in the mark scheme for the question (however; the use of the full mark range may be limited according to the quality of the candidate responses seen).

GENERIC MARKING PRINCIPLE 6:

Marks awarded are based solely on the requirements as defined in the mark scheme. Marks should not be awarded with grade thresholds or grade descriptors in mind.

© UCLES 2023 Page 2 of 7

Mathematics-Specific Marking Principles

- 1 Unless a particular method has been specified in the question, full marks may be awarded for any correct method. However, if a calculation is required then no marks will be awarded for a scale drawing.
- 2 Unless specified in the question, non-integer answers may be given as fractions, decimals or in standard form. Ignore superfluous zeros, provided that the degree of accuracy is not affected.
- 3 Allow alternative conventions for notation if used consistently throughout the paper, e.g. commas being used as decimal points.
- 4 Unless otherwise indicated, marks once gained cannot subsequently be lost, e.g. wrong working following a correct form of answer is ignored (isw).
- Where a candidate has misread a number or sign in the question and used that value consistently throughout, provided that number does not alter the difficulty or the method required, award all marks earned and deduct just 1 A or B mark for the misread.
- Recovery within working is allowed, e.g. a notation error in the working where the following line of working makes the candidate's intent clear.

Abbreviations

cao - correct answer only

dep – dependent

FT – follow through after error

isw - ignore subsequent working

oe – or equivalent

SC – Special Case

nfww - not from wrong working

soi – seen or implied

© UCLES 2023 Page 3 of 7

Question	Answer	Marks	Partial Marks
1(a)	24.08 cao	1	
1(b)	20 cao	1	
2	-14	1	
3	16	2	B1 for -14 or M1 for 30 – 2 × 7
4	0.062	1	
5	64	2	B1 for any of these angles labelled on the diagram $ \begin{array}{c c} & (50^{\circ}) & x & 66 \\ \hline & (50^{\circ}) & x & 66 \\ \hline & (50^{\circ}) & x & 66 \\ \hline & (114^{\circ}) & 50 $
6(a)	Multiple of 3 or multiple of 37	1	
6(b)	113	1	
7	231	2	B1 for any of these angles in correct place on diagram 51 or 129 or 141 between east line drawn from P and QP or 39 between west line drawn from P and QP or indicating the correct bearing of Q from P on the diagram or M1 for $180 + (90 - 39)$ oe or $360 - (90 + 39)$ oe
8	$\frac{25}{8}$ or $\frac{7}{4}$	B1	Correct step for dealing with mixed numbers Allow $\frac{25k}{8k}$ or $\frac{7k}{4k}$
	$\frac{25}{8} \text{ and } \frac{14}{8} \qquad 2\frac{1}{8} \text{ and } \frac{6}{8} \text{ oe}$	M1	Correct method to find common denominator e.g. $3\frac{1}{8} - 1\frac{6}{8}$, $\frac{100 - 56}{32}$

© UCLES 2023 Page 4 of 7

Question	Answer	Marks	Partial Marks
	$1\frac{3}{8}$ cao	A1	
9	$2 \times 3 \times 3 \times 5$ or $2 \times 3^2 \times 5$	2	B1 for 2, 3, 3, 5 or M1 for correct factor tree/diagram/list/table.
10	5w - t final answer	2	B1 for $2t + 2w$ or $3w - 3t$ or for $5w - t$ seen then spoiled or for $5w$ or $-t$ in the final answer
11(a)	3.5	2	M1 for $\frac{9}{5} = \frac{6.3}{h}$ oe
11(b)	51.84	2	M1 for $\left(\frac{9}{5}\right)^2$ or $\left(\frac{5}{9}\right)^2$ oe or $\left(\frac{6.3}{their(a)}\right)^2$ or $\left(\frac{their(a)}{6.3}\right)^2$ oe
12(a)	2.5 oe	1	
12(b)	140	2	M1 for a correct area e.g. 10×12 , $\frac{1}{2} \times 4 \times 10$, $0.5 \times (16 + 12) \times 10$
13(a)	1.2 oe	2	B1 for 3^{2p+3p} or 3^6 soi
13(b)	$2x^2$ final answer	2	B1 for kx^2 or $2x^k$ as final answer or correct answer spoiled
14	$[\pm] \sqrt{\frac{y+x}{2}}$ oe final answer	3	M1 for isolating term in w M1 for division by 2 M1 for square root Max 2 marks if answer incorrect
15(a)	E	1	
15(b)	$\begin{array}{c c} \mathcal{E} & A & & B \\ \hline 1 & 9 & 3 & 7 \\ \hline \end{array}$	2	B1 for two correct or for $n(A) = 12$ and $n(B) = 10$ and $n(A \cap B) \neq 0$
16	24x ¹² final answer	2	B1 for $24x^k$ or kx^{12} in final answer

© UCLES 2023 Page 5 of 7

Question	Answer	Marks	Partial Marks
17(a)	62	2	B1 for angle $AOB = 124$
			or M1 for $\frac{180-28-28}{2}$ oe
17(b)	81	2	B1 for angle $RQP = 47$ or $QPU = 52$ or M1 for $180 - 52 - 47$
18	408 or 408.4 to 408.5	4	M3 for $2 \times \pi \times 5 \times 8 + 2 \times \pi \times 5^2$ oe
			OR
			M1 for $2 \times \pi \times 5 \times 8$ M1 for $[2] \times \pi \times 5^2$
19(a)	14 - 3n oe final answer	2	B1 for $14 - kn$ or $c - 3n$
			or $14 - 3n$ seen then spoiled
19(b)	5^{n-1} oe	2	B1 for 5^{an+b} where $a > 0$
			or 5^k for any integer $k > 1$
20	6.5 nfww	3	M2 for $\frac{55.2+0.05}{8 \text{ to 9}}$ or $\frac{55.2 \text{ to } 55.3}{9-0.5}$
			or M1 for 9 + 0.5 or 9 – 0.5 or 55.2 + 0.05 or 55.2 – 0.05
21	(2, 3) and (-2, -1)	4	B3 for $x = 2$ and $x = -2$ or B2 for $x^2 - 4[=0]$ or better or for $(2, 3)$ or $(-2, -1)$ or M1 for $x + 1 = x^2 + x - 3$ oe
22	$\frac{12}{\sqrt{w}}$ oe final answer	2	M1 for $x = \frac{k}{\sqrt{w}}$ oe
23	10	2	M1 for $\frac{7.5}{18 \div 6}$ oe or better
			or [frequency densities] 3 and 4
			or 45 and 4 <i>h</i> or 45 and 40
24	$\frac{x-2}{a+1}$ final answer	4	B2 for $(x-2)(a-1)$ or M1 for $a(x-2)-(x-2)$
			or $x(a-1)-2(a-1)$
			B1 for $(a-1)(a+1)$

© UCLES 2023 Page 6 of 7

Question	Answer	Marks	Partial Marks
25	a = 3 $k = 5$	2	B1 for each or M1 for $2 \times 7ax^6 + 3kx^{k-1}$ or better
26	$\mathbf{b} + \frac{4}{3}\mathbf{a}$	3	B2 for correct unsimplified answer or $\overrightarrow{QX} = \frac{1}{3}\mathbf{a}$ seen or B1 for a correct route for \overrightarrow{OX} or answer $\mathbf{b} + k\mathbf{a}$ where $k > 1$ or $\overrightarrow{OK} = \mathbf{a} + \frac{3}{4}\mathbf{b}$ seen or $\overrightarrow{QX} = \frac{1}{3}\overrightarrow{OP}$ or $\overrightarrow{OX} = \frac{4}{3} \times \overrightarrow{OK}$

© UCLES 2023 Page 7 of 7