Cambridge IGCSE ${ }^{\text {TM }}$

MATHEMATICS

0580/43
Paper 4 (Extended)
October/November 2023
MARK SCHEME
Maximum Mark: 130

Published

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes should be read in conjunction with the question paper and the Principal Examiner Report for Teachers.

Cambridge International will not enter into discussions about these mark schemes.
Cambridge International is publishing the mark schemes for the October/November 2023 series for most Cambridge IGCSE, Cambridge International A and AS Level components, and some Cambridge O Level components.

Generic Marking Principles

These general marking principles must be applied by all examiners when marking candidate answers. They should be applied alongside the specific content of the mark scheme or generic level descriptors for a question. Each question paper and mark scheme will also comply with these marking principles.

GENERIC MARKING PRINCIPLE 1:

Marks must be awarded in line with:

- the specific content of the mark scheme or the generic level descriptors for the question
- the specific skills defined in the mark scheme or in the generic level descriptors for the question
- the standard of response required by a candidate as exemplified by the standardisation scripts.

GENERIC MARKING PRINCIPLE 2:

Marks awarded are always whole marks (not half marks, or other fractions).

GENERIC MARKING PRINCIPLE 3:

Marks must be awarded positively:

- marks are awarded for correct/valid answers, as defined in the mark scheme. However, credit is given for valid answers which go beyond the scope of the syllabus and mark scheme, referring to your Team Leader as appropriate
- marks are awarded when candidates clearly demonstrate what they know and can do
- marks are not deducted for errors
- marks are not deducted for omissions
- answers should only be judged on the quality of spelling, punctuation and grammar when these features are specifically assessed by the question as indicated by the mark scheme. The meaning, however, should be unambiguous.

GENERIC MARKING PRINCIPLE 4:

Rules must be applied consistently, e.g. in situations where candidates have not followed instructions or in the application of generic level descriptors.

GENERIC MARKING PRINCIPLE 5:

Marks should be awarded using the full range of marks defined in the mark scheme for the question (however; the use of the full mark range may be limited according to the quality of the candidate responses seen).

GENERIC MARKING PRINCIPLE 6:
Marks awarded are based solely on the requirements as defined in the mark scheme. Marks should not be awarded with grade thresholds or grade descriptors in mind.

Mathematics-Specific Marking Principles

1 Unless a particular method has been specified in the question, full marks may be awarded for any correct method. However, if a calculation is required then no marks will be awarded for a scale drawing.

2 Unless specified in the question, non-integer answers may be given as fractions, decimals or in standard form. Ignore superfluous zeros, provided that the degree of accuracy is not affected.

3 Allow alternative conventions for notation if used consistently throughout the paper, e.g. commas being used as decimal points.

4 Unless otherwise indicated, marks once gained cannot subsequently be lost, e.g. wrong working following a correct form of answer is ignored (isw).

5 Where a candidate has misread a number or sign in the question and used that value consistently throughout, provided that number does not alter the difficulty or the method required, award all marks earned and deduct just 1 A or B mark for the misread.

6 Recovery within working is allowed, e.g. a notation error in the working where the following line of working makes the candidate's intent clear.

Abbreviations

awrt answers which round to
cao correct answer only
dep dependent
FT follow through after error
isw ignore subsequent working
nfww not from wrong working
oe or equivalent
rot rounded or truncated
SC Special Case
soi seen or implied

Question	Answer	Marks	Partial Marks
1(a)	18593 cao	2	M1 for $7437.05 \times 250 \div 100$ oe
1(b)	804.53 cao	2	M1 for $5400 \div 671.20[\times 100]$ oe
1(c)(i)	2000	2	M1 for $3500 \div(4+3)[\times k]$ oe
1(c)(ii)	$1354.13 \ldots$	3	M2 for $(3500-\operatorname{their}(\mathbf{c})(\mathbf{i})) \times \frac{77.05}{85.35}$ oe or M1 for $(3500-$ their $(\mathbf{c})(\mathbf{i})) \div$ figs 85.35 oe or for $\frac{77.05}{85.35}$ oe or for $(3500-$ their $(\mathbf{c})(\mathbf{i})) \times$ figs 77.05
1(c)(iii)	2 [h] 52 [min] nfww	3	$\begin{aligned} & \text { M2 for } \frac{2100 \text { to } 2200}{740+10} \text { or } \frac{2200-50}{740 \text { to } 760} \\ & \text { or M1 for } 2200+50 \text { or } 2200-50 \\ & \text { or } 740+10 \text { or } 740-10 \end{aligned}$
2(a)	36.7 or 36.66 to 36.67 or $36 \frac{2}{3}$	2	M1 for $\frac{11}{8+6+11+5}[\times 100]$ oe
2(b)(i)	72, 132 and 60	2	M1 for $360 \div(8+6+11+5)$ oe or $96 \div 8$
2(b)(ii)	Correct pie chart drawn	2	For 2 marks, strict $\mathbf{F T}$ their angles for correct pie chart only if angles add up to 360 . B1FT for one correct sector
2(c)	29	2	M1 for $8 \times\left(1+\frac{262.5}{100}\right)$ oe or $\mathbf{B 1}$ for 21
2(d)(i)	1.5×10^{9}	1	
2(d)(ii)	70.8 or 70.75...	2	M1 for 1500 [million] $\div 21.2$ [million]
3(a)	Rotation 90° [anticlockwise] oe $(2,7)$	3	B1 for each
3(b)(i)	Image at $(-4,-1),(-3,-1),(-4,-4)$	2	B1 for reflection in $y=k$ or $x=1$
3(b)(ii)	Image at (2, -4), (1, -4), (1, -1)	2	B1 for translation by $\binom{5}{k}$ or $\binom{k}{-7}$
3(b)(iii)	Image at ($-4,7),(-4,1),(-2,1)$	2	B1 for enlargement, factor 2 with other centre

Question	Answer	Marks	Partial Marks
4(a)	144	2	M1 for $180-\frac{360}{10}$ or $\frac{180(10-2)}{10}$ oe
4(b)	$\begin{aligned} & w=20 \\ & x=20 \\ & y=60 \\ & z=45 \end{aligned}$	5	B1 for w B1FT for $x=$ their w B2FT for $y=80-$ their w or $\mathbf{B 1}$ for angle $B D C=20 \mathrm{FT}$ their w or angle $A D E$ $=55$ or angle $C A D=25$ B1FT for $z=25+$ their w or $105-$ their y
5(a)	28 and 45 on table	B2	B1 for each
	Histogram correctly completed	B3	B1 for each correct bar If 0 scored, $\mathbf{S C 1}$ for two of FD's 3.8, 1.9 or 0.6 oe soi
5(b)	30.7 or 30.66 to 30.67	4	M1 for midpoints soi M1 for use of $\sum f h$ with h in correct interval including both boundaries M1 (dep on $\left.2^{\text {nd }} \mathrm{M} 1\right)$ for \sum fh \div (their $28+$ their $45+$ $57+38+12)$
5(c)	Exact values are not known oe	1	
5(d)	$\frac{1254}{39697} \text { oe }$	4	M3 for $N\left(\frac{38+57}{57+38+12} \times \frac{12}{56+38+12} \times \frac{11}{56+38+11}\right) \text { oe }$ where $N=1,2$ or 3 or $\mathbf{M} \mathbf{2}$ for $\frac{38+57}{57+38+12}$ and $\frac{12}{56+38+12}$ or $\frac{12}{57+38+12}$ and $\frac{11}{57+38+11}$ oe seen or M1 for $\frac{38+57}{57+38+12}$ or $\frac{12}{57+38+12}$ oe seen If 0 scored $\mathbf{S C 1}$ for answer $\frac{41040}{1225043}$ or $0.0335 \ldots$
6(a)(i)	7	1	
6(a)(ii)	$\frac{1}{8}$ oe	2	M1 for $g(-0.5)$ or for $64^{5(x)-3}$ or better

Question	Answer	Marks	Partial Marks
6(b)	$\frac{2-x}{x}$ or $\frac{2}{x}-1$ final answer	M1 for $y(x+1)=2$ or $x=\frac{2}{y+1}$ or better	
M1 for $\frac{2-y}{y}$ or $x y=2-x$ oe			

Question	Answer	Marks	Partial Marks
8(a)(iii)	16.1 or 1610 to 16.13	5	M2 for $2 \times \sqrt{6^{2}-2^{2}}$ oe or $2 \times 6 \cos 19.5$ oe or M1 for $O C^{2}+2^{2}=6^{2}$ oe or $6 \cos 19.5$ or better AND M2 for $\sqrt{6^{2}+\text { their } O D^{2}-2 \times 6 \times \text { their } O D \times \cos 135}$ OR M1 for $6^{2}+$ their $O D^{2}-2 \times 6 \times$ their $O D \times \cos 135$ A1 for 259 to 260
8(a)(iv)	$\begin{aligned} & 94.2 \text { or } 94.3 \text { or } 94.15 \text { to } 94.27 \ldots \\ & \text { nfww } \end{aligned}$	4	M1 for $1 / 2 \times 6 \times$ their $O D \times \sin 135$ oe M1 for $1 / 2 \times 6 \times 2 \times \sin (90-19.5)$ oe or for $1 / 2 \times$ their $O C \times 2$ M1dep for their (a)(ii) + their two triangle areas
8(b)	1000 cao	3	M2 for $160 \times\left(\frac{20}{8}\right)^{2}$ or $160 \div\left(\frac{8}{20}\right)^{2}$ oe or M1 for $\left(\frac{20}{8}\right)^{2}$ or $\left(\frac{8}{20}\right)^{2}$ oe OR M2 for $\frac{\text { sector angle }}{360} \times \pi 20^{2}$ or M1 for $\frac{160}{\pi 8^{2}} \times 360$ oe or better OR M2 for $\frac{\text { percentage }}{100} \times \pi 20^{2}$ oe or better or M1 for $\frac{160}{\pi 8^{2}}[\times 100]$ oe or better
9(a)	$\left[A B^{2}=\right](3-0)^{2}+(3-2)^{2}$ oe or better	M1	or $\binom{3}{1}$ oe
	$\left[A C^{2}=\right](0-2)^{2}+(4-0)^{2}$ oe or better	M1	or $\binom{4}{-2}$ oe
	$\left[B C^{2}=\right](0-3)^{2}+(4-3)^{2}$ oe or better	M1	or $\binom{1}{-3}$ oe

Question	Answer	Marks	Partial Marks
	Triangle is isosceles [with 10,20 and 10 or better shown]	A1	or Triangle is isosceles and only vector $A B$ and $B C$ have the same magnitude [because they have the same components]
9(b)(i)	$[y=]-\frac{1}{2} x+2 \text { oe }$	3	M1 for $\frac{0-2}{4-0}$ oe M1 for substituting $(0,2)$ or $(4,0)$ into $y=$ their $m x+c$ oe or B1 for answer $y=k x+2$
9(b)(ii)	$[y=] 2 x-3$	4	M1 for $\frac{-1}{\text { their } \operatorname{grad}(\mathbf{b})(\mathbf{i})}$ B1 for $(2,1)$ M1 for substituting their $(2,1)$ into $y=$ their $p x+d$ oe
9(b)(iii)	$(-2,-7)$	3	B2 for $w=-2$ or M1 for $4 w+1=2 w-3$ FT their (b)(ii) or for $2=\frac{4 w+1-3}{w-3}$
10(a)	$14 x-22$ or $2(7 x-11)$ final answer	2	B1 for answer $k x-22$ or $14 x+c$ or for $8 x-4$ or $-18+6 x$ or for correct answer seen in working
10(b)(i)	$3 x y(2 x+3)$ final answer	2	M1 for answer $3\left(2 x^{2} y+3 x y\right)$ or $3 x(2 x y+3 y)$ or $3 y\left(2 x^{2}+3 x\right)$ or $x y(6 x+9)$ B1 for correct answer seen and spoilt
10(b)(ii)	$(2 x+y)(2 x-y+4)$ final answer	3	M1 for $(2 x+y)(2 x-y)$ M1 for $4(2 x+y)$ If 0 scored, SC1 for answer $4 x(x+2)+y(4-y)$ oe
10(c)(i)	$\frac{100}{x}+\frac{150}{x+10}=4 \frac{1}{3}$ oe or $150=\left(\frac{13}{3}-\frac{100}{x}\right)(x+10)$	M1	
	$\frac{100(x+10)+150 x}{x(x+10)}\left[=\right.$ their $\left.4 \frac{1}{3}\right]$ or better	M1	
	$300 x+3000+450 x=13 x^{2}+130 x$ oe or better	B1	Allow correct multiples
	$13 x^{2}-620 x-3000=0$	A1	With no errors or omissions

Question	Answer	Marks	Partial Marks
10(c)(ii)	$\frac{[--] 620 \pm \sqrt{(-620)^{2}-4(13)(-3000)}}{2(13)}$ or $-\frac{(-620)}{2 \times 13} \pm \sqrt{\frac{620^{2}}{4 \times 13^{2}}-\frac{(-3000)}{13}}$ both oe or better	M2	M1 for $\sqrt{(-620)^{2}-4 \times 13 \times-3000}$ oe or for $\frac{--620+\sqrt{p}}{2(13)}$ or $\frac{--620-\sqrt{p}}{2(13)}$ oe
	52.1 final answer	B1	
11(a)	$\begin{aligned} & (-2,0) \\ & (0,18) \\ & (4.5,0) \text { oe } \end{aligned}$	4	B1 for $B=(0,18)$ B3 for $A=(-2,0)$ and $C=(4.5,0)$ oe or B2 for $x=-2$ and $x=4.5$ oe or B1 for $(9-2 x)(2+x)$ oe or either A or C correct
11(b)	$5-4 x$ final answer	2	B1 for one correct term when simplified
11(c)	(-3, -15)	3	B2FT for $x=-3$ OR M1 for their $(\mathbf{b})=17$ M1 dep for correct substitution of their x into $18+5 x-2 x^{2}$ shown

